Analytical Methods Inorganics 3010A/3050B/6010B #### METHOD 3010A # ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TOTAL METALS FOR ANALYSIS BY FLAA OR ICP SPECTROSCOPY #### 1.0 SCOPE AND APPLICATION - 1.1 This digestion procedure is used for the preparation of aqueous samples, EP and mobility-procedure extracts, and wastes that contain suspended solids for analysis, by flame atomic absorption spectroscopy (FLAA) or inductively coupled argon plasma spectroscopy (ICP). The procedure is used to determine total metals. - 1.2 Samples prepared by Method 3010 may be analyzed by FLAA or ICP for the following: Aluminum *Arsenic Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead Magnesium Manganese Molybdenum Nickel Potassium *Selenium Sodium Thallium Vanadium Zinc * Analysis by ICP NOTE: See Method 7760 for the digestion and FLAA analysis of Silver. 1.3 This digestion procedure is not suitable for samples which will be analyzed by graphite furnace atomic absorption spectroscopy because hydrochloric acid can cause interferences during furnace atomization. Consult Method 3020A for samples requiring graphite furnace analysis. #### 2.0 SUMMARY OF METHOD 2.1 A mixture of nitric acid and the material to be analyzed is refluxed in a covered Griffin beaker. This step is repeated with additional portions of nitric acid until the digestate is light in color or until its color has stabilized. After the digestate has been brought to a low volume, it is refluxed with hydrochloric acid and brought up to volume. If sample should go to dryness, it must be discarded and the sample reprepared. #### 3.0 INTERFERENCES 3.1 Interferences are discussed in the referring analytical method. #### 4.0 APPARATUS AND MATERIALS - 4.1 Griffin beakers 150-mL or equivalent. - 4.2 Watch glasses Ribbed and plain or equivalent. - 4.3 Qualitative filter paper or centrifugation equipment. - 4.4 Graduated cylinder or equivalent 100mL. - 4.5 Funnel or equivalent. - 4.6 Hot plate or equivalent heating source adjustable and capable of maintaining a temperature of 90-95°C. #### 5.0 REAGENTS - 5.1 Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination. - 5.2 Reagent Water. Reagent water will be interference free. All references to water in the method refer to reagent water unless otherwise specified. Refer to Chapter One for a definition of reagent water. - 5.3 Nitric acid (concentrated), HNO₃. Acid should be analyzed to determine levels of impurities. If method blank is < MDL, the acid can be used. - 5.4 Hydrochloric acid (1:1), HCl. Prepared from water and hydrochloric acid. Hydrochloric acid should be analyzed to determine level of impurities. If method blank is < MDL, the acid can be used. # 6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING - 6.1 All samples must have been collected using a sampling plan that addresses the considerations discussed in Chapter Nine of this manual. - 6.2 All sample containers must be prewashed with detergents, acids, and water. Plastic and glass containers are both suitable. See Chapter Three, Step 3.1.3, for further information. - 6.3 Aqueous wastewaters must be acidified to a pH of < 2 with HNO₃. #### 7.0 PROCEDURE - 7.1 Transfer a 100-mL representative aliquot of the well-mixed sample to a 150-mL Griffin beaker and add 3 mL of concentrated HNO₃. Cover the beaker with a ribbed watch glass or equivalent. Place the beaker on a hot plate or equivalent heating source and cautiously evaporate to a low volume (5 mL), making certain that the sample does not boil and that no portion of the bottom of the beaker is allowed to go dry. Cool the beaker and add another 3-mL portion of concentrated HNO₃. Cover the beaker with a nonribbed watch glass and return to the hot plate. Increase the temperature of the hot plate so that a gentle reflux action occurs. - NOTE: If a sample is allowed to go to dryness, low recoveries will result. Should this occur, discard the sample and reprepare. - 7.2 Continue heating, adding additional acid as necessary, until the digestion is complete (generally indicated when the digestate is light in color or does not change in appearance with continued refluxing). Again, uncover the beaker or use a ribbed watch glass, and evaporate to a low volume (3 mL), not allowing any portion of the bottom of the beaker to go dry. Cool the beaker. Add a small quantity of 1:1 HCI (10 mL/100 mL of final solution), cover the beaker, and reflux for an additional 15 minutes to dissolve any precipitate or residue resulting from evaporation. 7.3 Wash down the beaker walls and watch glass with water and, when necessary, filter or centrifuge the sample to remove silicates and other insoluble material that could clog the nebulizer. Filtration should be done only if there is concern that insoluble materials may clog the nebulizer. This additional step can cause sample contamination unless the filter and filtering apparatus are thoroughly cleaned. Rinse the filter and filter apparatus with dilute nitric acid and discard the rinsate. Filter the sample and adjust the final volume to 100 mL with reagent water and the final acid concentration to 10%. The sample is now ready for analysis. #### 8.0 QUALITY CONTROL - 8.1 All quality control measures described in Chapter One should be followed. - 8.2 For each analytical batch of samples processed, blanks should be carried throughout the entire sample-preparation and analytical process. These blanks will be useful in determining if samples are being contaminated. Refer to Chapter One for the proper protocol when analyzing blanks. - 8.3 Replicate samples should be processed on a routine basis. A replicate sample is a sample brought through the whole sample preparation and analytical process. A replicate sample should be processed with each analytical batch or every 20 samples, whichever is greater. Refer to Chapter One for the proper protocol when analyzing replicates. - 8.4 Spiked samples or standard reference materials should be employed to determine accuracy. A spiked sample should be included with each batch of samples processed and whenever a new sample matrix is being analyzed. Refer to Chapter One for the proper protocol when analyzing spikes. - 8.5 The method of standard addition shall be used for the analysis of all EP extracts and delisting petitions (see Method 7000, Step 8.7). Although not required, use of the method of standard addition is recommended for any sample that is suspected of having an interference. #### 9.0 METHOD PERFORMANCE 9.1 No data provided. #### 10.0 REFERENCES - Rohrbough, W.G.; et al. <u>Reagent Chemicals, American Chemical Society Specifications</u>, 7th ed.; American Chemical Society: Washington, DC, 1986. - 1985 Annual Book of ASTM Standards, Vol. 11.01; "Standard Specification for Reagent Water"; ASTM: Philadelphia, PA, 1985; D1193-77. # METHOD 3010A ACID DIGESTION OF AQUEOUS SAMPLES AND EXTRACTS FOR TOTAL METALS ANALYSIS BY FLAA OR ICP SPECTROSCOPY #### METHOD 3050B # ACID DIGESTION OF SEDIMENTS, SLUDGES, AND SOILS #### 1.0 SCOPE AND APPLICATION 1.1 This method has been written to provide two separate digestion procedures, one for the preparation of sediments, sludges, and soil samples for analysis by flame atomic absorption spectrometry (FLAA) or inductively coupled plasma atomic emission spectrometry (ICP-AES) and one for the preparation of sediments, sludges, and soil samples for analysis of samples by Graphite Furnace AA (GFAA) or inductively coupled plasma mass spectrometry (ICP-MS). The extracts from these two procedures are <u>not</u> interchangeable and should only be used with the analytical determinations outlined in this section. Samples prepared by this method may be analyzed by ICP-AES or GFAA for all the listed metals as long as the detecion limits are adequate for the required end-use of the data. Alternative determinative techniques may be used if they are scientifically valid and the QC criteria of the method, including those dealing with interferences, can be achieved. Other elements and matrices may be analyzed by this method if performance is demonstrated for the analytes of interest, in the matrices of interest, at the concentration levels of interest (See Section 8.0). The recommended determinative techniques for each element are listed below: | FLAA/IC | P-AES | GFAA/ICP-MS | |---|--|--| | Aluminum Antimony Barium Beryllium Cadmium Calcium Chromium Cobalt Copper Iron Lead | Magnesium Manganese Molybdenum Nickel Potassium Silver Sodium Thallium Vanadium Zinc | Arsenic Beryllium Cadmium Chromium Cobalt Iron Lead Molybdenum Selenium Thallium | | Loud | | vanadium | 1.2 This method is not a <u>total</u> digestion technique for most samples. It is a very strong acid digestion that will dissolve almost all elements that could become "environmentally available." By design, elements bound in silicate structures are not normally dissolved by this procedure as they are not usually mobile in the environment. If absolute total digestion is required use Method 3052. #### 2.0 SUMMARY OF METHOD - 2.1 For the digestion of samples, a representative 1-2 gram (wet weight) or 1 gram (dry weight) sample is digested with repeated additions of nitric acid (HNO₃) and hydrogen peroxide (H_2O_2) . - 2.2 For GFAA or ICP-MS analysis, the resultant digestate is reduced in volume while heating and then diluted to a final
volume of 100 mL. - 2.3 For ICP-AES or FLAA analyses, hydrochloric acid (HCl) is added to the initial digestate and the sample is refluxed. In an optional step to increase the solubility of some metals (see Section 7.3.1: NOTE), this digestate is filtered and the filter paper and residues are rinsed, first with hot HCl and then hot reagent water. Filter paper and residue are returned to the digestion flask, refluxed with additional HCl and then filtered again. The digestate is then diluted to a final volume of 100 mL. - 2.4 If required, a separate sample aliquot shall be dried for a total percent solids determination. #### 3.0 INTERFERENCES 3.1 Sludge samples can contain diverse matrix types, each of which may present its own analytical challenge. Spiked samples and any relevant standard reference material should be processed in accordance with the quality control requirements given in Sec. 8.0 to aid in determining whether Method 3050B is applicable to a given waste. #### 4.0 APPARATUS AND MATERIALS - 4.1 Digestion Vessels 250-mL. - 4.2 Vapor recovery device (e.g., ribbed watch glasses, appropriate refluxing device, appropriate solvent handling system). - 4.3 Drying ovens able to maintain 30°C ± 4°C. - 4.4 Temperature measurement device capable of measuring to at least 125°C with suitable precision and accuracy (e.g., thermometer, IR sensor, thermocouple, thermister, etc.) - 4.5 Filter paper Whatman No. 41 or equivalent. - 4.6 Centrifuge and centrifuge tubes. - 4.7 Analytical balance capable of accurate weighings to 0.01 g. - 4.8 Heating source Adjustable and able to maintain a temperature of 90-95°C. (e.g., hot plate, block digestor, microwave, etc.) - 4.9 Funnel or equivalent. - 4.10 Graduated cylinder or equivalent volume measuring device. - 4.11 Volumetric Flasks 100-mL. #### 5.0 REAGENTS 5.1 Reagent grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination. If the purity of a reagent is questionable, analyze the reagent to determine the level of impurities. The reagent blank must be less than the MDL in order to be used. - 5.2 Reagent Water. Reagent water will be interference free. All references to water in the method refer to reagent water unless otherwise specified. Refer to Chapter One for a definition of reagent water. - 5.3 Nitric acid (concentrated), HNO₃. Acid should be analyzed to determine level of impurities. If method blank is < MDL, the acid can be used. - 5.4 Hydrochloric acid (concentrated), HCl. Acid should be analyzed to determine level of impurities. If method blank is < MDL, the acid can be used. - 5.5 Hydrogen peroxide (30%), H₂O₂. Oxidant should be analyzed to determine level of impurities. If method blank is < MDL, the peroxide can be used. # 6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING - 6.1 All samples must have been collected using a sampling plan that addresses the considerations discussed in Chapter Nine of this manual. - 6.2 All sample containers must be demonstrated to be free of contamination at or below the reporting limit. Plastic and glass containers are both suitable. See Chapter Three, Section 3.1.3, for further information. - 6.3 Nonaqueous samples should be refrigerated upon receipt and analyzed as soon as possible. - 6.4 It can be difficult to obtain a representative sample with wet or damp materials. Wet samples may be dried, crushed, and ground to reduce subsample variability as long as drying does not affect the extraction of the analytes of interest in the sample. #### 7.0 PROCEDURE 7.1 Mix the sample thoroughly to achieve homogeneity and sieve, if appropriate and necessary, using a USS #10 sieve. All equipment used for homogenization should be cleaned according to the guidance in Sec. 6.0 to minimize the potential of cross-contamination. For each digestion procedure, weigh to the nearest 0.01 g and transfer a 1-2 g sample (wet weight) or 1 g sample (dry weight) to a digestion vessel. For samples with high liquid content, a larger sample size may be used as long as digestion is completed. <u>NOTE</u>: All steps requiring the use of acids should be conducted under a fume hood by properly trained personnel using appropriate laboratory safety equipment. The use of an acid vapor scrubber system for waste minimization is encouraged. 7.2 For the digestion of samples for analysis by GFAA or ICP-MS, add 10 mL of 1:1 HNO₃, mix the slurry, and cover with a watch glass or vapor recovery device. Heat the sample to $95^{\circ}\text{C} \pm 5^{\circ}\text{C}$ and reflux for 10 to 15 minutes without boiling. Allow the sample to cool, add 5 mL of concentrated HNO₃, replace the cover, and reflux for 30 minutes. If brown fumes are generated, indicating oxidation of the sample by HNO₃, repeat this step (addition of 5 mL of conc. HNO₃) over and over until <u>no</u> brown fumes are given off by the sample indicating the complete reaction with HNO₃. Using a ribbed watch glass or vapor recovery system, either allow the solution to evaporate to approximately 5 mL without boiling or heat at $95^{\circ}\text{C} \pm 5^{\circ}\text{C}$ without boiling for two hours. Maintain a covering of solution over the bottom of the vessel at all times. NOTE: Alternatively, for direct energy coupling devices, such as a microwave, digest samples for analysis by GFAA or ICP-MS by adding 10 mL of 1:1 HNO₃, mixing the slurry and then covering with a vapor recovery device. Heat the sample to $95^{\circ}C \pm 5^{\circ}C$ and reflux for 5 minutes at $95^{\circ}C \pm 5^{\circ}C$ without boiling. Allow the sample to cool for 5 minutes, add 5 mL of concentrated HNO₃, heat the sample to $95^{\circ}C \pm 5^{\circ}C$ and reflux for 5 minutes at $95^{\circ}C \pm 5^{\circ}C$. If brown fumes are generated, indicating oxidation of the sample by HNO₃, repeat this step (addition of 5 mL concentrated HNO₃) until no brown fumes are given off by the sample indicating the complete reaction with HNO₃. Using a vapor recovery system, heat the sample to $95^{\circ}C \pm 5^{\circ}C$ and reflux for 10 minutes at $95^{\circ}C \pm 5^{\circ}C$ without boiling. 7.2.1 After the step in Section 7.2 has been completed and the sample has cooled, add 2 mL of water and 3 mL of 30% H $_2$ O $_2$. Cover the vessel with a watch glass or vapor recovery device and return the covered vessel to the heat source for warming and to start the peroxide reaction. Care must be taken to ensure that losses do not occur due to excessively vigorous effervescence. Heat until effervescence subsides and cool the vessel. <u>NOTE</u>: Alternatively, for direct energy coupled devices: After the Sec. 7.2 "NOTE" step has been completed and the sample has cooled for 5 minutes, add slowly 10 mL of 30% H_2O_2 . Care must be taken to ensure that losses do not occur due to excessive vigorous effervesence. Go to Section 7.2.3. 7.2.2 Continue to add 30% H₂O₂ in 1-mL aliquots with warming until the effervescence is minimal or until the general sample appearance is unchanged. NOTE: Do not add more than a total of 10 mL 30% H₂O₂. 7.2.3 Cover the sample with a ribbed watch glass or vapor recovery device and continue heating the acid-peroxide digestate until the volume has been reduced to approximately 5 mL or heat at $95^{\circ}\text{C} \pm 5^{\circ}\text{C}$ without boiling for two hours. Maintain a covering of solution over the bottom of the vessel at all times. <u>NOTE</u>: Alternatively, for direct energy coupled devices: Heat the acid-peroxide digestate to 95° C \pm 5° C in 6 minutes and remain at 95° C \pm 5° C without boiling for 10 minutes. 7.2.4 After cooling, dilute to 100 mL with water. Particulates in the digestate should then be removed by filtration, by centrifugation, or by allowing the sample to settle. The sample is now ready for analysis by GFAA or ICP-MS. - 7.2.4.1 Filtration Filter through Whatman No. 41 filter paper (or equivalent). - 7.2.4.2 Centrifugation Centrifugation at 2,000-3,000 rpm for 10 minutes is usually sufficient to clear the supernatant. - 7.2.4.3 The diluted digestate solution contains approximately 5% (v/v) HNO₃. For analysis, withdraw aliquots of appropriate volume and add any required reagent or matrix modifier. - 7.3 For the analysis of samples for FLAA or ICP-AES, add 10 mL conc. HCl to the sample digest from 7.2.3 and cover with a watch glass or vapor recovery device. Place the sample on/in the heating source and reflux at $95^{\circ}\text{C} \pm 5^{\circ}\text{C}$ for 15 minutes. <u>NOTE</u>: Alternatively, for direct energy coupling devices, such as a microwave, digest samples for analysis by FLAA and ICP-AES by adding 5 mL HCl and 10 mL H_2O to the sample digest from 7.2.3 and heat the sample to 95°C \pm 5°C, Reflux at 95°C \pm 5°C without boiling for 5 minutes. 7.4 Filter the digestate through Whatman No. 41 filter paper (or equivalent) and collect filtrate in a 100-mL volumetric flask. Make to volume and analyze by FLAA or ICP-AES. <u>NOTE</u>: Section 7.5 may be used to improve the solubilities and recoveries of antimony, barium, lead, and silver when necessary. These steps are <u>optional</u> and are <u>not required</u> on a routine basis. - 7.5 Add 2.5 mL conc. HNO $_3$ and 10 mL conc. HCl to a 1-2 g sample (wet weight) or 1 g sample (dry weight) and cover with a watchglass or vapor recovery device. Place the sample on/in the heating source and reflux for 15 minutes. - 7.5.1 Filter the digestate through Whatman No. 41 filter paper (or equivalent) and collect filtrate in a 100-mL volumetric flask. Wash the filter paper, while still in the funnel, with no more than 5 mL of hot (~95°C) HCl, then with 20 mL
of hot (~95°C) reagent water. Collect washings in the same 100-mL volumetric flask. - 7.5.2 Remove the filter and residue from the funnel, and place them back in the vessel. Add 5 mL of conc. HCl, place the vessel back on the heating source, and heat at $95^{\circ}\text{C} \pm 5^{\circ}\text{C}$ until the filter paper dissolves. Remove the vessel from the heating source and wash the cover and sides with reagent water. Filter the residue and collect the filtrate in the same 100-mL volumetric flask. Allow filtrate to cool, then dilute to volume. <u>NOTE</u>: High concentrations of metal salts with temperature-sensitive solubilities can result in the formation of precipitates upon cooling of primary and/or secondary filtrates. If precipitation occurs in the flask upon cooling, <u>do not</u> dilute to volume. - 7.5.3 If a precipitate forms on the bottom of a flask, add up to 10 mL of concentrated HCl to dissolve the precipitate. After precipitate is dissolved, dilute to volume with reagent water. Analyze by FLAA or ICP-AES. - 7.6 Calculations - 7.6.1 The concentrations determined are to be reported on the basis of the actual weight of the sample. If a dry weight analysis is desired, then the percent solids of the sample must also be provided. - 7.6.2 If percent solids is desired, a separate determination of percent solids must be performed on a homogeneous aliquot of the sample. #### 8.0 QUALITY CONTROL - 8.1 All quality control measures described in Chapter One should be followed. - 8.2 For each batch of samples processed, a method blank should be carried throughout the entire sample preparation and analytical process according to the frequency described in Chapter One. These blanks will be useful in determining if samples are being contaminated. Refer to Chapter One for the proper protocol when analyzing method blanks. - 8.3 Spiked duplicate samples should be processed on a routine basis and whenever a new sample matrix is being analyzed. Spiked duplicate samples will be used to determine precision and bias. The criteria of the determinative method will dictate frequency, but 5% (one per batch) is recommended or whenever a new sample matrix is being analyzed. Refer to Chapter One for the proper protocol when analyzing spiked replicates. - 8.4 Limitations for the FLAA and ICP-AES optional digestion procedure. Analysts should be aware that the upper linear range for silver, barium, lead, and antimony may be exceeded with some samples. If there is a reasonable possibility that this range may be exceeded, or if a sample's analytical result exceeds this upper limit, a smaller sample size should be taken through the entire procedure and re-analyzed to determine if the linear range has been exceeded. The approximate linear upper ranges for a 2 gram sample size: ``` Ag 2,000 mg/kg As 1,000,000 mg/kg Ba 2,500 mg/kg Be 1,000,000 mg/kg Cd 1,000,000 mg/kg Co 1,000,000 mg/kg Cr 1,000,000 mg/kg Cu 1,000,000 mg/kg Mo 1,000,000 mg/kg Ni 1,000,000 mg/kg Pb 200,000 mg/kg Sb 200,000 mg/kg Se 1,000,000 mg/kg TI 1,000,000 mg/kg 1.000,000 mg/kg Zn 1,000,000 mg/kg ``` NOTE: These ranges will vary with sample matrix, molecular form, and size. # 9.0 METHOD PERFORMANCE 9.1 In a single laboratory, the recoveries of the three matrices presented in Table 2 were obtained using the digestion procedure outlined for samples prior to analysis by FLAA and ICP-AES. The spiked samples were analyzed in duplicate. Tables 3-5 represents results of analysis of NIST Standard Reference Materials that were obtained using both atmospheric pressure microwave digestion techniques and hot-plate digestion procedures. #### 10.0 REFERENCES - 1. Rohrbough, W.G.; et al. <u>Reagent Chemicals, American Chemical Society Specifications</u>, 7th ed.; American Chemical Society: Washington, DC, 1986. - 1985 Annual Book of ASTM Standards, Vol. 11.01; "Standard Specification for Reagent Water"; ASTM: Philadelphia, PA, 1985; D1193-77. - 3. Edgell, K.; <u>USEPA Method Study 37 SW-846 Method 3050 Acid Digestion of Sediments</u>, <u>Sludges</u>, <u>and Soils</u>. EPA Contract No. 68-03-3254, November 1988. - Kimbrough, David E., and Wakakuwa, Janice R. <u>Acid Digestion for Sediments, Sludges, Soils, and Solid Wastes.</u> A Proposed Alternative to EPA SW 846 Method 3050, Environmental Science and Technology, Vol. 23, Page 898, July 1989. - 5. Kimbrough, David E., and Wakakuwa, Janice R. Report of an Interlaboratory Study Comparing EPA SW 846 Method 3050 and an Alternative Method from the California Department of Health Services, Fifth Annual Waste Testing and Quality Assurance Symposium, Volume I, July 1989. Reprinted in Solid Waste Testing and Quality Assurance: Third Volume, ASTM STP 1075, Page 231, C.E. Tatsch, Ed., American Society for Testing and Materials, Philadelphia, 1991. - 6. Kimbrough, David E., and Wakakuwa, Janice R. <u>A Study of the Linear Ranges of Several Acid Digestion Procedures</u>, Environmental Science and Technology, Vol. 26, Page 173, January 1992. Presented Sixth Annual Waste Testing and Quality Assurance Symposium, July 1990. - 7. Kimbrough, David E., and Wakakuwa, Janice R. <u>A Study of the Linear Ranges of Several Acid Digestion Procedures</u>, Sixth Annual Waste Testing and Quality Assurance Symposium, Reprinted in Solid Waste Testing and Quality Assurance: Fourth Volume, ASTM STP 1076, Ed., American Society for Testing and Materials, Philadelphia, 1992. - 8. NIST published leachable concentrations. Found in addendum to certificate of analysis for SRMs 2709, 2710, 2711 August 23, 1993. - 9. Kingston, H.M. Haswell, S.J. ed., <u>Microwave Enhanced Chemistry</u>, Professional Reference Book Series, American Chemical Society, Washington, D.C., Chapter 3, 1997. TABLE 1 STANDARD RECOVERY (%) COMPARISON FOR METHODS 3050A AND 3050B^a | Analyte | METHOD 3050A ^a | METHOD 3050B w/option | | | |---------|---------------------------|-----------------------|--|--| | Ag | 9.5 | 98 | | | | As | 86 | 102 | | | | Ba | 97 | 103 | | | | Be | 96 | 102 | | | | Cd | 101 | 99 | | | | Co | 99 | 105 | | | | Cr | 98 | 94 | | | | Cu | 87 | 94 | | | | Mo | 97 | 96 | | | | Ni | 98 | 92 | | | | Pb | 97 | 95 | | | | Sb | 87 | 88 | | | | Se | 94 | 91 | | | | TI | 96 | 96 | | | | V | 93 | 103 | | | | Zn | 99 | 95 | | | All values are percent recovery. Samples: 4 mL of 100 mg/mL multistandard; n = 3. TABLE 2 PERCENT RECOVERY COMPARISON FOR METHODS 3050A AND 3050B | | | | Perc | ent Recover | y ^{a,c} | | | | |---------|-------|--------|------|----------------|------------------|-------|-------------|-----| | Analyte | Samp | e 4435 | Samp | ole 4766 | Sampl | e HJ | Avera | age | | | 3050A | 3050B | 3050 | <u>A</u> 3050B | 3050A | 3050B | 3050A 3050B | | | Ag | 9.8 | 103 | 15 | 89 | 56 | 93 | 27 | 95 | | As | 70 | 102 | 80 | 95 | 83 | 102 | 77 | 100 | | Ba | 85 | 94 | 78 | 95 | b | b | 81 | 94 | | Be | 94 | 102 | 108 | 98 | 99 | 94 | 99 | 97 | | Cd | 92 | 88 | 91 | 95 | 95 | 97 | 93 | 94 | | Co | 90 | 94 | 87 | 95 | 89 | 93 | 89 | 94 | | Cr | 90 | 95 | 89 | 94 | 72 | 101 | 83 | 97 | | Cu | 81 | 88 | 85 | 87 | 70 | 106 | 77 | 94 | | Мо | 79 | 92 | 83 | 98 | 87 | 103 | 83 | 98 | | Ni | 88 | 93 | 93 | 100 | 87 | 101 | 92 | 98 | | Pb | 82 | 92 | 80 | 91 | 77 | 91 | 81 | 91 | | Sb | 28 | 84 | 23 | 77 | 46 | 76 | 32 | 79 | | Se | 84 | 89 | 81 | 96 | 99 | 96 | 85 | 94 | | TI | 88 | 87 | 69 | 95 | 66 | 67 | 74 | 83 | | V | 84 | 97 | 86 | 96 | 90 | 88 | 87 | 93 | | Zn | 96 | 106 | 78 | 75 | b | b | 87 | 99 | a - Samples: 4 mL of 100 mg/mL multi-standard in 2 g of sample. Each value is percent recovery and is the average of duplicate spikes. b - Unable to accurately quantitate due to high background values. c - Method 3050B using optional section. Table 3 Results of Analysis of Nist Standard Reference Material 2704 "River Sediment" Using Method 3050B ($\mu g/g \pm SD$) | Element | Atm. Pressure
Microwave Assisted
Method with Power
Control | Atm. Pressure Microwave
Assisted Method with
Temperature Control
(gas-bulb) | Atm. Pressure Microwave
Assisted Method with
Temperature Control
(IR-sensor) | Hot-Plate | NIST Certified Values for
Total Digestion
(μg/g ±95% CI) | |---------|---|--|---|-----------|--| | Cu | 101 ± 7 | 89 ± 1 | 98 ± 1.4 | 100 ± 2 | 98.6 ± 5.0 | | Pb | 160 ± 2 | 145 ± 6 | 145 ± 7 | 146 ± 1 | 161 ± 17 | | Zn | 427 ± 2 | 411 ± 3 | 405 ± 14 | 427 ± 5 | 438 ± 12 | | Cd | NA | 3.5 ± 0.66 | 3.7 ± 0.9 | NA | 3.45 ± 0.22 | | Cr | 82 ± 3 | 79 ± 2 | 85 ± 4 | 89 ± 1 | 135 ± 5 | | Ni | 42 ± 1 | 36 ± 1 | 38 ± 4 | 44 ± 2 | 44.1 ± 3.0 | NA - Not Available Table 4 Results of Analysis of NIST Standard Reference Material 2710 "Montana Soil (Highly Elevated Trace Element Concentrations)" Using Method 3050B $(\mu g/g \pm SD)$ | Element | Atm. Pressure
Microwave
Assisted Method
with Power
Control | Atm. Pressure Microwave
Assisted Method with
Temperature Control
(gas-bulb) | Atm. Pressure Microwave
Assisted Method with
Temperature Control
(IR-sensor) | Hot-Plate | NIST Leachable
Concentrations Using
Method 3050 | NIST Certified Values for
Total Digestion
(µg/g ±95% CI) | |---------|--|--|---|------------|---|--| | Cu | 2640 ± 60 | 2790 ± 41 | 2480 ± 33 | 2910 ± 59 | 2700 | 2950 ± 130 | | Pb | 5640 ± 117 | 5430 ± 72 | 5170 ± 34 | 5720 ± 280 | 5100 | 5532 ± 80 | | Zn | 6410 ± 74 |
5810 ± 34 | 6130 ± 27 | 6230 ± 115 | 5900 | 6952 ± 91 | | Cd | NA | 20.3 ± 1.4 | 20.2 ± 0.4 | NA | 20 | 21.8 ± 0.2 | | Cr | 20 ± 1.6 | 19 ± 2 | 18 ± 2.4 | 23 ± 0.5 | 19 | 39* | | | | | | | | | | Revision 2 | December 1996 | |------------|---------------| |------------|---------------| | 10.1 | | |------------|------------------------------------| | 7 ± 0.44 | | | 9.1 ± 1.1 | on only. | | 10±1 | n-certified values, for informatio | | 7.8 ± 0.29 | able * Non | | Ē | NA - Not Avail: | 14.3 ± 1.0 Table 5 Results of Analysis of NIST Standard Reference Material 2711 "Montana Soil (Moderately Elevated Trace Element Concentrations)" Using Method 3050B (μg/g ± SD) | Element | Atm. Pressure
Microwave
Assisted Method
with Power Control | Atm. Pressure
Microwave
Assisted Method
with Temperature
Control (gas-bulb) | Atm. Pressure Microwave Assisted Method with Temperature Control (IR- sensor) | Hot-Plate | NIST Leachable
Concentrations Using
Method 3050 | NIST Certified Values for
Total Digestion
(µg/g ±95% CI) | |---------|---|---|---|-----------|---|--| | Cu | 107 ± 4.6 | 98 ± 5 | 98 ± 3.8 | 111 ± 6.4 | 100 | 114 ± 2 | | Pb | 1240 ± 68 | 1130 ± 20 | 1120 ± 29 | 1240 ± 38 | 1100 | 1162 ± 31 | | Zn | 330 ± 17 | 312 ± 2 | 307 ± 12 | 340 ± 13 | 310 | 350.4 ± 4.8 | | Cd | NA | 39.6 ± 3.9 | 40.9 ± 1.9 | NA | 40 | 41.7 ± 0.25 | | Cr | 22 ± 0.35 | 21 ± 1 | 15 ± 1.1 | 23 ± 0.9 | 20 | 47* | | Ni | 15 ± 0.2 | 17 ± 2 | 15 ± 1.6 | 16 ± 0.4 | 16 | 20.6 ± 1.1 | NA - Not Available ^{*} Non-certified values, for information only. # METHOD 3050B ACID DIGESTION OF SEDIMENTS, SLUDGES, AND SOILS CD-ROM 3050B - 13 Revision 2 December 1996 #### METHOD 6010B # INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROMETRY # 1.0 SCOPE AND APPLICATION - 1.1 Inductively coupled plasma-atomic emission spectrometry (ICP-AES) determines trace elements, including metals, in solution. The method is applicable to all of the elements listed in Table 1. All matrices, excluding filtered groundwater samples but including ground water, aqueous samples, TCLP and EP extracts, industrial and organic wastes, soils, sludges, sediments, and other solid wastes, require digestion prior to analysis. Groundwater samples that have been prefiltered and acidified will not need acid digestion. Samples which are not digested must either use an internal standard or be matrix matched with the standards. Refer to Chapter Three for the appropriate digestion procedures. - 1.2 Table 1 lists the elements for which this method is applicable. Detection limits, sensitivity, and the optimum and linear concentration ranges of the elements can vary with the wavelength, spectrometer, matrix and operating conditions. Table 1 lists the recommended analytical wavelengths and estimated instrumental detection limits for the elements in clean aqueous matrices. The instrument detection limit data may be used to estimate instrument and method performance for other sample matrices. Elements and matrices other than those listed in Table 1 may be analyzed by this method if performance at the concentration levels of interest (see Section 8.0) is demonstrated. - 1.3 Users of the method should state the data quality objectives prior to analysis and must document and have on file the required initial demonstration performance data described in the following sections prior to using the method for analysis. - 1.4 Use of this method is restricted to spectroscopists who are knowledgeable in the correction of spectral, chemical, and physical interferences described in this method. #### 2.0 SUMMARY OF METHOD - 2.1 Prior to analysis, samples must be solubilized or digested using appropriate Sample Preparation Methods (e.g. Chapter Three). When analyzing groundwater samples for dissolved constituents, acid digestion is not necessary if the samples are filtered and acid preserved prior to analysis. - 2.2 This method describes multielemental determinations by ICP-AES using sequential or simultaneous optical systems and axial or radial viewing of the plasma. The instrument measures characteristic emission spectra by optical spectrometry. Samples are nebulized and the resulting aerosol is transported to the plasma torch. Element-specific emission spectra are produced by a radio-frequency inductively coupled plasma. The spectra are dispersed by a grating spectrometer, and the intensities of the emission lines are monitored by photosensitive devices. Background correction is required for trace element determination. Background must be measured adjacent to analyte lines on samples during analysis. The position selected for the background-intensity measurement, on either or both sides of the analytical line, will be determined by the complexity of the spectrum adjacent to the analyte line. In one mode of analysis the position used should be as free as possible from spectral interference and should reflect the same change in background intensity as occurs at the analyte wavelength measured. Background correction is not required in cases of line broadening where a background correction measurement would actually degrade the analytical result. The possibility of additional interferences named in Section 3.0 should also be recognized and appropriate corrections made; tests for their presence are described in Section 8.5. Alternatively, users may choose multivariate calibration methods. In this case, point selections for background correction are superfluous since whole spectral regions are processed. #### 3.0 INTERFERENCES - 3.1 Spectral interferences are caused by background emission from continuous or recombination phenomena, stray light from the line emission of high concentration elements, overlap of a spectral line from another element, or unresolved overlap of molecular band spectra. - 3.1.1 Background emission and stray light can usually be compensated for by subtracting the background emission determined by measurements adjacent to the analyte wavelength peak. Spectral scans of samples or single element solutions in the analyte regions may indicate when alternate wavelengths are desirable because of severe spectral interference. These scans will also show whether the most appropriate estimate of the background emission is provided by an interpolation from measurements on both sides of the wavelength peak or by measured emission on only one side. The locations selected for the measurement of background intensity will be determined by the complexity of the spectrum adjacent to the wavelength peak. The locations used for routine measurement must be free of off-line spectral interference (interelement or molecular) or adequately corrected to reflect the same change in background intensity as occurs at the wavelength peak. For multivariate methods using whole spectral regions, background scans should be included in the correction algorithm. Off-line spectral interferences are handled by including spectra on interfering species in the algorithm. - 3.1.2 To determine the appropriate location for off-line background correction, the user must scan the area on either side adjacent to the wavelength and record the apparent emission intensity from all other method analytes. This spectral information must be documented and kept on file. The location selected for background correction must be either free of off-line interelement spectral interference or a computer routine must be used for automatic correction on all determinations. If a wavelength other than the recommended wavelength is used, the analyst must determine and document both the overlapping and nearby spectral interference effects from all method analytes and common elements and provide for their automatic correction on all analyses. Tests to determine spectral interference must be done using analyte concentrations that will adequately describe the interference. Normally, 100 mg/L single element solutions are sufficient; however, for analytes such as iron that may be found at high concentration, a more appropriate test would be to use a concentration near the upper analytical range limit. - 3.1.3 Spectral overlaps may be avoided by using an alternate wavelength or can be compensated by equations that correct for interelement contributions. Instruments that use equations for interelement correction require the interfering elements be analyzed at the same time as the element of interest. When operative and uncorrected, interferences will produce false positive determinations and be reported as analyte concentrations. More extensive information on interferant effects at various wavelengths and resolutions is available in reference wavelength tables and books. Users may apply interelement correction equations determined on their instruments with tested concentration ranges to compensate (off line or on line) for the effects of interfering elements. Some potential spectral interferences observed for the recommended wavelengths are given in Table 2. For multivariate methods using whole spectral regions, spectral interferences are handled by including spectra of the interfering elements in the algorithm. The interferences listed are only those that occur between method analytes. Only interferences of a direct overlap nature are listed. These overlaps were observed with a single instrument having a working resolution of 0.035 nm. - 3.1.4 When using interelement correction equations, the interference may be expressed as analyte concentration equivalents (i.e. false analyte concentrations) arising from 100 mg/L of the interference element. For example, assume that As is to be determined (at 193.696 nm) in a
sample containing approximately 10 mg/L of Al. According to Table 2, 100 mg/L of Al would yield a false signal for As equivalent to approximately 1.3 mg/L. Therefore, the presence of 10 mg/L of Al would result in a false signal for As equivalent to approximately 0.13 mg/L. The user is cautioned that other instruments may exhibit somewhat different levels of interference than those shown in Table 2. The interference effects must be evaluated for each individual instrument since the intensities will vary. - 3.1.5 Interelement corrections will vary for the same emission line among instruments because of differences in resolution, as determined by the grating, the entrance and exit slit widths, and by the order of dispersion. Interelement corrections will also vary depending upon the choice of background correction points. Selecting a background correction point where an interfering emission line may appear should be avoided when practical. Interelement corrections that constitute a major portion of an emission signal may not yield accurate data. Users should not forget that some samples may contain uncommon elements that could contribute spectral interferences. - 3.1.6 The interference effects must be evaluated for each individual instrument whether configured as a sequential or simultaneous instrument. For each instrument, intensities will vary not only with optical resolution but also with operating conditions (such as power, viewing height and argon flow rate). When using the recommended wavelengths, the analyst is required to determine and document for each wavelength the effect from referenced interferences (Table 2) as well as any other suspected interferences that may be specific to the instrument or matrix. The analyst is encouraged to utilize a computer routine for automatic correction on all analyses. - 3.1.7 Users of sequential instruments must verify the absence of spectral interference by scanning over a range of 0.5 nm centered on the wavelength of interest for several samples. The range for lead, for example, would be from 220.6 to 220.1 nm. This procedure must be repeated whenever a new matrix is to be analyzed and when a new calibration curve using different instrumental conditions is to be prepared. Samples that show an elevated background emission across the range may be background corrected by applying a correction factor equal to the emission adjacent to the line or at two points on either side of the line and interpolating between them. An alternate wavelength that does not exhibit a background shift or spectral overlap may also be used. - 3.1.8 If the correction routine is operating properly, the determined apparent analyte(s) concentration from analysis of each interference solution should fall within a specific concentration range around the calibration blank. The concentration range is calculated by multiplying the concentration of the interfering element by the value of the correction factor being tested and divided by 10. If after the subtraction of the calibration blank the apparent analyte concentration falls outside of this range in either a positive or negative direction, a change in the correction factor of more than 10% should be suspected. The cause of the change should be determined and corrected and the correction factor updated. The interference check solutions should be analyzed more than once to confirm a change has occurred. Adequate rinse time between solutions and before analysis of the calibration blank will assist in the confirmation. - 3.1.9 When interelement corrections are applied, their accuracy should be verified, daily, by analyzing spectral interference check solutions. If the correction factors or multivariate correction matrices tested on a daily basis are found to be within the 20% criteria for 5 consecutive days, the required verification frequency of those factors in compliance may be extended to a weekly basis. Also, if the nature of the samples analyzed is such they do not contain concentrations of the interfering elements at \pm one reporting limit from zero, daily verification is not required. All interelement spectral correction factors or multivariate correction matrices must be verified and updated every six months or when an instrumentation change, such as in the torch, nebulizer, injector, or plasma conditions occurs. Standard solution should be inspected to ensure that there is no contamination that may be perceived as a spectral interference. - 3.1.10 When interelement corrections are \underline{not} used, verification of absence of interferences is required. - 3.1.10.1 One method is to use a computer software routine for comparing the determinative data to limits files for notifying the analyst when an interfering element is detected in the sample at a concentration that will produce either an apparent false positive concentration, (i.e., greater than) the analyte instrument detection limit, or false negative analyte concentration, (i.e., less than the lower control limit of the calibration blank defined for a 99% confidence interval). - 3.1.10.2 Another method is to analyze an Interference Check Solution(s) which contains similar concentrations of the major components of the samples (>10 mg/L) on a continuing basis to verify the absence of effects at the wavelengths selected. These data must be kept on file with the sample analysis data. If the check solution confirms an operative interference that is \geq 20% of the analyte concentration, the analyte must be determined using (1) analytical and background correction wavelengths (or spectral regions) free of the interference, (2) by an alternative wavelength, or (3) by another documented test procedure. - 3.2 Physical interferences are effects associated with the sample nebulization and transport processes. Changes in viscosity and surface tension can cause significant inaccuracies, especially in samples containing high dissolved solids or high acid concentrations. If physical interferences are present, they must be reduced by diluting the sample or by using a peristaltic pump, by using an internal standard or by using a high solids nebulizer. Another problem that can occur with high dissolved solids is salt buildup at the tip of the nebulizer, affecting aerosol flow rate and causing instrumental drift. The problem can be controlled by wetting the argon prior to nebulization, using a tip washer, using a high solids nebulizer or diluting the sample. Also, it has been reported that better control of the argon flow rate, especially to the nebulizer, improves instrument performance: this may be accomplished with the use of mass flow controllers. The test described in Section 8.5.1 will help determine if a physical interference is present. - 3.3 Chemical interferences include molecular compound formation, ionization effects, and solute vaporization effects. Normally, these effects are not significant with the ICP technique, but if observed, can be minimized by careful selection of operating conditions (incident power, observation position, and so forth), by buffering of the sample, by matrix matching, and by standard addition procedures. Chemical interferences are highly dependent on matrix type and the specific analyte element. - 3.4 Memory interferences result when analytes in a previous sample contribute to the signals measured in a new sample. Memory effects can result from sample deposition on the uptake tubing to the nebulizer and from the build up of sample material in the plasma torch and spray chamber. The site where these effects occur is dependent on the element and can be minimized by flushing the system with a rinse blank between samples. The possibility of memory interferences should be recognized within an analytical run and suitable rinse times should be used to reduce them. The rinse times necessary for a particular element must be estimated prior to analysis. This may be achieved by aspirating a standard containing elements at a concentration ten times the usual amount or at the top of the linear dynamic range. The aspiration time for this sample should be the same as a normal sample analysis period, followed by analysis of the rinse blank at designated intervals. The length of time required to reduce analyte signals to within a factor of two of the method detection limit should be noted. Until the required rinse time is established, this method suggests a rinse period of at least 60 seconds between samples and standards. If a memory interference is suspected, the sample must be reanalyzed after a rinse period of sufficient length. Alternate rinse times may be established by the analyst based upon their DQOs. - 3.5 Users are advised that high salt concentrations can cause analyte signal suppressions and confuse interference tests. If the instrument does not display negative values, fortify the interference check solution with the elements of interest at 0.5 to 1 mg/L and measure the added standard concentration accordingly. Concentrations should be within 20% of the true spiked concentration or dilution of the samples will be necessary. In the absence of measurable analyte, overcorrection could go undetected if a negative value is reported as zero. - 3.6 The dashes in Table 2 indicate that no measurable interferences were observed even at higher interferant concentrations. Generally, interferences were discernible if they produced peaks, or background shifts, corresponding to 2 to 5% of the peaks generated by the analyte concentrations. #### 4.0 APPARATUS AND MATERIALS - 4.1 Inductively coupled argon plasma emission spectrometer: - 4.1.1 Computer-controlled emission spectrometer with background correction. - 4.1.2 Radio-frequency generator compliant with FCC regulations. - 4.1.3 Optional mass flow controller for argon nebulizer gas supply. - 4.1.4 Optional peristaltic pump. - 4.1.5 Optional Autosampler. - 4.1.6 Argon gas supply high purity. - 4.2 Volumetric flasks of
suitable precision and accuracy. - 4.3 Volumetric pipets of suitable precision and accuracy. #### 5.0 REAGENTS - 5.1 Reagent or trace metals grade chemicals shall be used in all tests. Unless otherwise indicated, it is intended that all reagents shall conform to the specifications of the Committee on Analytical Reagents of the American Chemical Society, where such specifications are available. Other grades may be used, provided it is first ascertained that the reagent is of sufficiently high purity to permit its use without lessening the accuracy of the determination. If the purity of a reagent is in question analyze for contamination. If the concentration of the contamination is less than the MDL then the reagent is acceptable. - 5.1.1 Hydrochloric acid (conc), HCI. - 5.1.2 Hydrochloric acid (1:1), HCl. Add 500 mL concentrated HCl to 400 mL water and dilute to 1 liter in an appropriately sized beaker. - 5.1.3 Nitric acid (conc), HNO₃. - 5.1.4 Nitric acid (1:1), HNO₃. Add 500 mL concentrated HNO₃ to 400 mL water and dilute to 1 liter in an appropriately sized beaker. - 5.2 Reagent Water. All references to water in the method refer to reagent water unless otherwise specified. Reagent water will be interference free. Refer to Chapter One for a definition of reagent water. - 5.3 Standard stock solutions may be purchased or prepared from ultra- high purity grade chemicals or metals (99.99% pure or greater). All salts must be dried for 1 hour at $105\,^{\circ}$ C, unless otherwise specified. Note: This section does not apply when analyzing samples that have been prepared by Method 3040. <u>CAUTION</u>: Many metal salts are extremely toxic if inhaled or swallowed. Wash hands thoroughly after handling. Typical stock solution preparation procedures follow. Concentrations are calculated based upon the weight of pure metal added, or with the use of the element fraction and the weight of the metal salt added. For metals: Concentration (ppm) = weight (mg) For metal salts: Concentration (ppm) = weight (mg) x mole fraction (volume (L)))))) 5.3.1 Aluminum solution, stock, 1 mL = 1000 μ g Al: Dissolve 1.000 g of aluminum metal, weighed accurately to at least four significant figures, in an acid mixture of 4.0 mL of (1:1) HCl and 1.0 mL of concentrated HNO $_3$ in a beaker. Warm beaker slowly to effect solution. When dissolution is complete, transfer solution quantitatively to a 1-liter flask, add an additional 10.0 mL of (1:1) HCl and dilute to volume with reagent water. NOTE: Weight of analyte is expressed to four significant figures for consistency with the weights below because rounding to two decimal places can contribute up to 4 % error for some of the compounds. - 5.3.2 Antimony solution, stock, 1 mL = 1000 μ g Sb: Dissolve 2.6673 g K(SbO)C₄H₄O₆ (element fraction Sb = 0.3749), weighed accurately to at least four significant figures, in water, add 10 mL (1:1) HCl, and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.3 Arsenic solution, stock, 1 mL = 1000 μ g As: Dissolve 1.3203 g of As₂O₃ (element fraction As = 0.7574), weighed accurately to at least four significant figures, in 100 mL of water containing 0.4 g NaOH. Acidify the solution with 2 mL concentrated HNO₃ and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.4 Barium solution, stock, 1 mL = 1000 μ g Ba: Dissolve 1.5163 g BaCl₂ (element fraction Ba = 0.6595), dried at 250 °C for 2 hours, weighed accurately to at least four significant figures, in 10 mL water with 1 mL (1:1) HCl. Add 10.0 mL (1:1) HCl and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.5 Beryllium solution, stock, 1 mL = 1000 μg Be: Do not dry. Dissolve 19.6463 g BeSO₄·4H₂O (element fraction Be = 0.0509), weighed accurately to at least four significant figures, in water, add 10.0 mL concentrated HNO₃, and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.6 Boron solution, stock, 1 mL = 1000 μ g B: Do not dry. Dissolve 5.716 g anhydrous H_3BO_3 (B fraction = 0.1749), weighed accurately to at least four significant figures, in reagent water and dilute in a 1-L volumetric flask with reagent water. Transfer immediately after mixing in a clean polytetrafluoroethylene (PTFE) bottle to minimize any leaching of boron from the glass volumetric container. Use of a non-glass volumetric flask is recommended to avoid boron contamination from glassware. - 5.3.7 Cadmium solution, stock, 1 mL = 1000 μg Cd: Dissolve 1.1423 g CdO (element fraction Cd = 0.8754), weighed accurately to at least four significant figures, in a - minimum amount of (1:1) HNO_3 . Heat to increase rate of dissolution. Add 10.0 mL concentrated HNO_3 and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.8 Calcium solution, stock, 1 mL = 1000 μ g Ca: Suspend 2.4969 g CaCO $_3$ (element Ca fraction = 0.4005), dried at 180°C for 1 hour before weighing, weighed accurately to at least four significant figures, in water and dissolve cautiously with a minimum amount of (1:1) HNO $_3$. Add 10.0 mL concentrated HNO $_3$ and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.9 Chromium solution, stock, 1 mL = 1000 μ g Cr: Dissolve 1.9231 g CrO $_3$ (element fraction Cr = 0.5200), weighed accurately to at least four significant figures, in water. When solution is complete, acidify with 10 mL concentrated HNO $_3$ and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.10 Cobalt solution, stock, 1 mL = 1000 μg Co: Dissolve 1.00 g of cobalt metal, weighed accurately to at least four significant figures, in a minimum amount of (1:1) HNO₃. Add 10.0 mL (1:1) HCl and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.11 Copper solution, stock, 1 mL = $1000 \, \mu g$ Cu: Dissolve $1.2564 \, g$ CuO (element fraction Cu = 0.7989), weighed accurately to at least four significant figures), in a minimum amount of (1:1) HNO₃. Add $10.0 \, \text{mL}$ concentrated HNO₃ and dilute to volume in a $1,000 \, \text{mL}$ volumetric flask with water. - 5.3.12 Iron solution, stock, 1 mL = 1000 μ g Fe: Dissolve 1.4298 g Fe $_2$ O $_3$ (element fraction Fe = 0.6994), weighed accurately to at least four significant figures, in a warm mixture of 20 mL (1:1) HCl and 2 mL of concentrated HNO $_3$. Cool, add an additional 5.0 mL of concentrated HNO $_3$, and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.13 Lead solution, stock, 1 mL = 1000 μ g Pb: Dissolve 1.5985 g Pb(NO₃)₂ (element fraction Pb = 0.6256), weighed accurately to at least four significant figures, in a minimum amount of (1:1) HNO₃. Add 10 mL (1:1) HNO₃ and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.14 Lithium solution, stock, 1 mL = 1000 μ g Li: Dissolve 5.3248 g lithium carbonate (element fraction Li = 0.1878), weighed accurately to at least four significant figures, in a minimum amount of (1:1) HCl and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.15 Magnesium solution, stock, 1 mL = 1000 μ g Mg: Dissolve 1.6584 g MgO (element fraction Mg = 0.6030), weighed accurately to at least four significant figures, in a minimum amount of (1:1) HNO₃. Add 10.0 mL (1:1) concentrated HNO₃ and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.16 Manganese solution, stock, 1 mL = 1000 μ g Mn: Dissolve 1.00 g of manganese metal, weighed accurately to at least four significant figures, in acid mixture (10 mL concentrated HCl and 1 mL concentrated HNO₃) and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.17 Mercury solution, stock, 1 mL = $1000 \,\mu g$ Hg: Do not dry, highly toxic element. Dissolve $1.354 \, g$ HgCl₂ (Hg fraction = 0.7388) in reagent water. Add $50.0 \, mL$ concentrated HNO₃ and dilute to volume in 1-L volumetric flask with reagent water. - 5.3.18 Molybdenum solution, stock, 1 mL = 1000 μ g Mo: Dissolve 1.7325 g (NH₄)₆Mo₇O₂₄.4H₂O (element fraction Mo = 0.5772), weighed accurately to at least four significant figures, in water and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.19 Nickel solution, stock, 1 mL = 1000 μ g Ni: Dissolve 1.00 g of nickel metal, weighed accurately to at least four significant figures, in 10.0 mL hot concentrated HNO₃, cool, and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.20 Phosphate solution, stock, 1 mL = 1000 μ g P: Dissolve 4.3937 g anhydrous KH₂PO₄ (element fraction P = 0.2276), weighed accurately to at least four significant figures, in water. Dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.21 Potassium solution, stock, 1 mL = 1000 μ g K: Dissolve 1.9069 g KCI (element fraction K = 0.5244) dried at 110 °C, weighed accurately to at least four significant figures, in water, and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.22 Selenium solution, stock, 1 mL = 1000 μg Se: Do not dry. Dissolve 1.6332 g H_2SeO_3 (element fraction Se = 0.6123), weighed accurately to at least four significant figures, in water and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.23 Silica solution, stock, 1 mL = 1000 μg SiO₂: Do not dry. Dissolve 2.964 g NH₄SiF₆, weighed accurately to at least four significant figures, in 200 mL (1:20) HCl with heating at 85°C to effect dissolution. Let solution cool and dilute to volume in a 1-L volumetric flask with reagent water. - 5.3.24 Silver solution, stock, 1 mL = $1000~\mu g$ Ag: Dissolve 1.5748~g AgNO $_3$ (element fraction Ag = 0.6350), weighed accurately to at least four significant figures, in water and 10 mL concentrated HNO $_3$. Dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.25 Sodium solution, stock, 1 mL = $1000 \,\mu g$ Na: Dissolve 2.5419 g NaCl (element fraction Na = 0.3934), weighed accurately to at least four significant figures, in water. Add $10.0 \, \text{mL}$ concentrated HNO₃ and dilute to volume in a 1,000 mL volumetric
flask with water. - 5.3.26 Strontium solution, stock, 1 mL = 1000 μ g Sr: Dissolve 2.4154 g of strontium nitrate (Sr(NO₃)₂) (element fraction Sr = 0.4140), weighed accurately to at least four significant figures, in a 1-liter flask containing 10 mL of concentrated HCl and 700 mL of water. Dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.27 Thallium solution, stock, 1 mL = 1000 μ g TI: Dissolve 1.3034 g TINO₃ (element fraction TI = 0.7672), weighed accurately to at least four significant figures, in water. Add 10.0 mL concentrated HNO₃ and dilute to volume in a 1,000 mL volumetric flask with water. - 5.3.28 Tin solution, stock, 1 mL = $1000 \,\mu g$ Sn: Dissolve 1.000 g Sn shot, weighed accurately to at least 4 significant figures, in $200 \, \text{mL}$ (1:1) HCl with heating to effect dissolution. Let solution cool and dilute with (1:1) HCl in a 1-L volumetric flask. - 5.3.29 Vanadium solution, stock, 1 mL = $1000 \, \mu g \, V$: Dissolve $2.2957 \, g \, NH_4 VO_3$ (element fraction V = 0.4356), weighed accurately to at least four significant figures, in a minimum amount of concentrated HNO₃. Heat to increase rate of dissolution. Add $10.0 \, mL$ concentrated HNO₃ and dilute to volume in a $1,000 \, mL$ volumetric flask with water. - $5.3.30\,$ Zinc solution, stock, 1 mL = 1000 μg Zn: Dissolve 1.2447 g ZnO (element fraction Zn = 0.8034), weighed accurately to at least four significant figures, in a minimum amount of dilute HNO₃. Add 10.0 mL concentrated HNO₃ and dilute to volume in a 1,000 mL volumetric flask with water. - 5.4 Mixed calibration standard solutions Prepare mixed calibration standard solutions by combining appropriate volumes of the stock solutions in volumetric flasks (see Table 3). Add the appropriate types and volumes of acids so that the standards are matrix matched with the sample digestates. Prior to preparing the mixed standards, each stock solution should be analyzed separately to determine possible spectral interference or the presence of impurities. Care should be taken when preparing the mixed standards to ensure that the elements are compatible and stable together. Transfer the mixed standard solutions to FEP fluorocarbon or previously unused polyethylene or polypropylene bottles for storage. Fresh mixed standards should be prepared, as needed, with the realization that concentration can change on aging. Some typical calibration standard combinations are listed in Table 3. - NOTE: If the addition of silver to the recommended acid combination results in an initial precipitation, add 15 mL of water and warm the flask until the solution clears. Cool and dilute to 100 mL with water. For this acid combination, the silver concentration should be limited to 2 mg/L. Silver under these conditions is stable in a tap-water matrix for 30 days. Higher concentrations of silver require additional HCI. - 5.5 Two types of blanks are required for the analysis for samples prepared by any method other than 3040. The calibration blank is used in establishing the analytical curve, and the method blank is used to identify possible contamination resulting from varying amounts of the acids used in the sample processing. - 5.5.1 The calibration blank is prepared by acidifying reagent water to the same concentrations of the acids found in the standards and samples. Prepare a sufficient quantity to flush the system between standards and samples. The calibration blank will also be used for all initial and continuing calibration blank determinations (see Sections 7.3 and 7.4). - 5.5.2 The method blank must contain all of the reagents in the same volumes as used in the processing of the samples. The method blank must be carried through the complete procedure and contain the same acid concentration in the final solution as the sample solution used for analysis. - 5.6 The Initial Calibration Verification (ICV) is prepared by the analyst by combining compatible elements from a standard source different than that of the calibration standard and at concentrations within the linear working range of the instrument (see Section 8.6.1 for use). - 5.7 The Continuing Calibration Verification (CCV)) should be prepared in the same acid matrix using the same standards used for calibration at a concentration near the mid-point of the calibration curve (see Section 8.6.1 for use). - 5.8 The interference check solution is prepared to contain known concentrations of interfering elements that will provide an adequate test of the correction factors. Spike the sample with the elements of interest, particularly those with known interferences at 0.5 to 1 mg/L. In the absence of measurable analyte, overcorrection could go undetected because a negative value could be reported as zero. If the particular instrument will display overcorrection as a negative number, this spiking procedure will not be necessary. # 6.0 SAMPLE COLLECTION, PRESERVATION, AND HANDLING 6.1 See the introductory material in Chapter Three, Inorganic Analytes, Sections 3.1 through 3.3. #### 7.0 PROCEDURE - 7.1 Preliminary treatment of most matrices is necessary because of the complexity and variability of sample matrices. Groundwater samples which have been prefiltered and acidified will not need acid digestion. Samples which are not digested must either use an internal standard or be matrix matched with the standards. Solubilization and digestion procedures are presented in Sample Preparation Methods (Chapter Three, Inorganic Analytes). - 7.2 Set up the instrument with proper operating parameters established as detailed below. The instrument must be allowed to become thermally stable before beginning (usually requiring at least 30 minutes of operation prior to calibration). Operating conditions The analyst should follow the instructions provided by the instrument manufacturer. - 7.2.1 Before using this procedure to analyze samples, there must be data available documenting initial demonstration of performance. The required data document the selection criteria of background correction points; analytical dynamic ranges, the applicable equations, and the upper limits of those ranges; the method and instrument detection limits; and the determination and verification of interelement correction equations or other routines for correcting spectral interferences. This data must be generated using the same instrument, operating conditions and calibration routine to be used for sample analysis. These documented data must be kept on file and be available for review by the data user or auditor. - 7.2.2 Specific wavelengths are listed in Table 1. Other wavelengths may be substituted if they can provide the needed sensitivity and are corrected for spectral interference. Because of differences among various makes and models of spectrometers, specific instrument operating conditions cannot be provided. The instrument and operating conditions utilized for determination must be capable of providing data of acceptable quality to the program and data user. The analyst should follow the instructions provided by the instrument manufacturer unless other conditions provide similar or better performance for - a task. Operating conditions for aqueous solutions usually vary from 1100 to 1200 watts forward power, 14 to 18 mm viewing height, 15 to 19 liters/min argon coolant flow, 0.6 to 1.5 L/min argon nebulizer flow, 1 to 1.8 mL/min sample pumping rate with a 1 minute preflush time and measurement time near 1 second per wavelength peak for sequential instruments and 10 seconds per sample for simultaneous instruments. For an axial plasma, the conditions will usually vary from 1100-1500 watts forward power, 15-19 liters/min argon coolant flow, 0.6-1.5 L/min argon nebulizer flow, 1-1.8 mL/min sample pumping rate with a 1 minute preflush time and measurement time near 1 second per wavelength peak for sequential instruments and 10 seconds per sample for simultaneous instruments. Reproduction of the Cu/Mn intensity ratio at 324.754 nm and 257.610 nm respectively, by adjusting the argon aerosol flow has been recommended as a way to achieve repeatable interference correction factors. - 7.2.3 The plasma operating conditions need to be optimized prior to use of the instrument. This routine is not required on a daily basis, but only when first setting up a new instrument or following a change in operating conditions. The following procedure is recommended or follow manufacturer's recommendations. The purpose of plasma optimization is to provide a maximum signal to background ratio for some of the least sensitive elements in the analytical array. The use of a mass flow controller to regulate the nebulizer gas flow or source optimization software greatly facilitates the procedure. - 7.2.3.1 Ignite the radial plasma and select an appropriate incident RF power. Allow the instrument to become thermally stable before beginning, about 30 to 60 minutes of operation. While aspirating a 1000 ug/L solution of yttrium, follow the instrument manufacturer's instructions and adjust the aerosol carrier gas flow rate through the nebulizer so a definitive blue emission region of the plasma extends approximately from 5 to 20 mm above the top of the load coil. Record the nebulizer gas flow rate or pressure setting for future reference. The yttrium solution can also be used for coarse optical alignment of the torch by observing the overlay of the blue light over the entrance slit to the optical system. - 7.2.3.2 After establishing the nebulizer gas flow rate, determine the solution uptake rate of the nebulizer in mL/min by aspirating a known volume of calibration blank for a period of at least three minutes. Divide the volume aspirated by the time in minutes and record the uptake rate; set the peristaltic pump to deliver the rate in a steady even flow. - 7.2.3.3 Profile the instrument to align it optically as it will be used during analysis. The following procedure can be used for both horizontal
and vertical optimization in the radial mode, but is written for vertical. Aspirate a solution containing 10 ug/L of several selected elements. These elements can be As, Se, Tl or Pb as the least sensitive of the elements and most needing to be optimize or others representing analytical judgement (V, Cr, Cu, Li and Mn are also used with success). Collect intensity data at the wavelength peak for each analyte at 1 mm intervals from 14 to 18 mm above the load coil. (This region of the plasma is referred to as the analytical zone.) Repeat the process using the calibration blank. Determine the net signal to blank intensity ratio for each analyte for each viewing height setting. Choose the height for viewing the plasma that provides the best net intensity ratios for the elements analyzed or the highest intensity ratio for the least sensitive element. For optimization in the axial mode, follow the instrument manufacturer's instructions. - 7.2.3.4 The instrument operating condition finally selected as being optimum should provide the lowest reliable instrument detection limits and method detection limits. - 7.2.3.5 If either the instrument operating conditions, such as incident power or nebulizer gas flow rate are changed, or a new torch injector tube with a different orifice internal diameter is installed, the plasma and viewing height should be reoptimized. - 7.2.3.6 After completing the initial optimization of operating conditions, but before analyzing samples, the laboratory must establish and initially verify an interelement spectral interference correction routine to be used during sample analysis. A general description concerning spectral interference and the analytical requirements for background correction in particular are discussed in the section on interferences. Criteria for determining an interelement spectral interference is an apparent positive or negative concentration for the analyte that falls within ± one reporting limit from zero. The upper control limit is the analyte instrument detection limit. Once established the entire routine must be periodically verified every six months. Only a portion of the correction routine must be verified more frequently or on a daily basis. Initial and periodic verification of the routine should be kept on file. Special cases where continual verification is required are described elsewhere. - 7.2.3.7 Before daily calibration and after the instrument warmup period, the nebulizer gas flow rate must be reset to the determined optimized flow. If a mass flow controller is being used, it should be set to the recorded optimized flow rate, In order to maintain valid spectral interelement correction routines the nebulizer gas flow rate should be the same (< 2% change) from day to day. - 7.2.4 For operation with organic solvents, use of the auxiliary argon inlet is recommended, as are solvent-resistant tubing, increased plasma (coolant) argon flow, decreased nebulizer flow, and increased RF power to obtain stable operation and precise measurements. - 7.2.5 Sensitivity, instrumental detection limit, precision, linear dynamic range, and interference effects must be established for each individual analyte line on each particular instrument. All measurements must be within the instrument linear range where the correction equations are valid. - 7.2.5.1 Method detection limits must be established for all wavelengths utilized for each type of matrix commonly analyzed. The matrix used for the MDL calculation must contain analytes of known concentrations within 3-5 times the anticipated detection limit. Refer to Chapter One for additional guidance on the performance of MDL studies. - 7.2.5.2 Determination of limits using reagent water represent a best case situation and do not represent possible matrix effects of real world samples. - 7.2.5.3 If additional confirmation is desired, reanalyze the seven replicate aliquots on two more non consecutive days and again calculate the method detection limit values for each day. An average of the three values for each analyte may provide for a more appropriate estimate. Successful analysis of samples with added analytes or using method of standard additions can give confidence in the method detection limit values determined in reagent water. - 7.2.5.4 The upper limit of the linear dynamic range must be established for each wavelength utilized by determining the signal responses from a minimum for three, preferably five, different concentration standards across the range. One of these should be near the upper limit of the range. The ranges which may be used for the analysis of samples should be judged by the analyst from the resulting data. The data, calculations and rationale for the choice of range made should be documented and kept on file. The upper range limit should be an observed signal no more than 10% below the level extrapolated from lower standards. Determined analyte concentrations that are above the upper range limit must be diluted and reanalyzed. The analyst should also be aware that if an interelement correction from an analyte above the linear range exists, a second analyte where the interelement correction has been applied may be inaccurately reported. New dynamic ranges should be determined whenever there is a significant change in instrument response. For those analytes that periodically approach the upper limit, the range should be checked every six months. For those analytes that are known interferences, and are present at above the linear range, the analyst should ensure that the interelement correction has not been inaccurately applied. NOTE: Many of the alkali and alkaline earth metals have non-linear response curves due to ionization and self absorption effects. These curves may be used if the instrument allows; however the effective range must be checked and the second order curve fit should have a correlation coefficient of 0.995 or better. Third order fits are not acceptable. These non-linear response curves should be revalidated and recalculated every six months. These curves are much more sensitive to changes in operating conditions than the linear lines and should be checked whenever there have been moderate equipment changes. - 7.2.6 The analyst must (1) verify that the instrument configuration and operating conditions satisfy the analytical requirements and (2) maintain quality control data confirming instrument performance and analytical results. - 7.3 Profile and calibrate the instrument according to the instrument manufacturer's recommended procedures, using the typical mixed calibration standard solutions described in Section 5.4. Flush the system with the calibration blank (Section 5.5.1) between each standard or as the manufacturer recommends. (Use the average intensity of multiple exposures for both standardization and sample analysis to reduce random error.) The calibration curve must consist of a minimum of a blank and a standard. - 7.4 For all analytes and determinations, the laboratory must analyze an ICV (Section 5.6), a calibration blank (Section 5.5.1), and a continuing calibration verification (CCV) (Section 5.7) immediately following daily calibration. A calibration blank and either a calibration verification (CCV) or an ICV must be analyzed after every tenth sample and at the end of the sample run. Analysis of the check standard and calibration verification must verify that the instrument is within \pm 10% of calibration with relative standard deviation < 5% from replicate (minimum of two) integrations. If the calibration cannot be verified within the specified limits, the sample analysis must be discontinued, the cause determined and the instrument recalibrated. All samples following the last acceptable ICV, CCV or check standard must be reanalyzed. The analysis data of the calibration blank, check standard, and ICV or CCV must be kept on file with the sample analysis data. - 7.5 Rinse the system with the calibration blank solution (Section 5.5.1) before the analysis of each sample. The rinse time will be one minute. Each laboratory may establish a reduction in this rinse time through a suitable demonstration. - 7.6 Calculations: If dilutions were performed, the appropriate factors must be applied to sample values. All results should be reported with up to three significant figures. - 7.7 The MSA should be used if an interference is suspected or a new matrix is encountered. When the method of standard additions is used, standards are added at one or more levels to portions of a prepared sample. This technique compensates for enhancement or depression of an analyte signal by a matrix. It will not correct for additive interferences, such as contamination, interelement interferences, or baseline shifts. This technique is valid in the linear range when the interference effect is constant over the range, the added analyte responds the same as the endogenous analyte, and the signal is corrected for additive interferences. The simplest version of this technique is the single addition method. This procedure calls for two identical aliquots of the sample solution to be taken. To the first aliquot, a small volume of standard is added; while to the second aliquot, a volume of acid blank is added equal to the standard addition. The sample concentration is calculated by: multiplying the intensity value for the unfortified aliquot by the volume (Liters) and concentration (mg/L or mg/kg) of the standard addition to make the numerator; the difference in intensities for the fortified sample and unfortified sample is multiplied by the volume (Liters) of the sample aliquot for the denominator. The quotient is the sample concentration. For more than one fortified portion of the prepared sample, linear regression analysis can be applied using a computer or calculator program to obtain the concentration of the sample solution. NOTE: Refer to Method 7000 for a more detailed discussion of the MSA. 7.8 An
alternative to using the method of standard additions is the internal standard technique. Add one or more elements not in the samples and verified not to cause an interelement spectral interference to the samples, standards and blanks; yttrium or scandium are often used. The concentration should be sufficient for optimum precision but not so high as to alter the salt concentration of the matrix. The element intensity is used by the instrument as an internal standard to ratio the analyte intensity signals for both calibration and quantitation. This technique is very useful in overcoming matrix interferences especially in high solids matrices. #### 8.0 QUALITY CONTROL - 8.1 All quality control data should be maintained and available for easy reference or inspection. All quality control measures described in Chapter One should be followed. - 8.2 Dilute and reanalyze samples that exceed the linear calibration range or use an alternate, less sensitive line for which quality control data is already established. - 8.3 Employ a minimum of one method blank per sample batch to determine if contamination or any memory effects are occurring. A method blank is a volume of reagent water carried through the same preparation process as a sample (refer to Chapter One). - 8.4 Analyze matrix spiked duplicate samples at a frequency of one per matrix batch. A matrix duplicate sample is a sample brought through the entire sample preparation and analytical process in duplicate. - 8.4.1.1 The relative percent difference between spiked matrix duplicate determinations is to be calculated as follows: $$RPD = \frac{|D_1 - D_2|}{(|D_1 + D_2|)/2} \times 100$$ where: RPD = relative percent difference. D_1 = first sample value. D₂ = second sample value (replicate). (A control limit of \pm 20% RPD or within the documented historical acceptance limits for each matrix shall be used for sample values greater than ten times the instrument detection limit.) - 8.4.1.2 The spiked sample or spiked duplicate sample recovery is to be within \pm 25% of the actual value or within the documented historical acceptance limits for each matrix. - 8.5 It is recommended that whenever a new or unusual sample matrix is encountered, a series of tests be performed prior to reporting concentration data for analyte elements. These tests, as outlined in Sections 8.5.1 and 8.5.2, will ensure that neither positive nor negative interferences are operating on any of the analyte elements to distort the accuracy of the reported values. - 8.5.1 Dilution Test: If the analyte concentration is sufficiently high (minimally, a factor of 10 above the instrumental detection limit after dilution), an analysis of a 1:5 dilution should agree within \pm 10% of the original determination. If not, a chemical or physical interference effect should be suspected. - 8.5.2 Post Digestion Spike Addition: An analyte spike added to a portion of a prepared sample, or its dilution, should be recovered to within 75% to 125% of the known value. The spike addition should produce a minimum level of 10 times and a maximum of 100 times the instrumental detection limit. If the spike is not recovered within the specified limits, a matrix effect should be suspected. <u>CAUTION</u>: If spectral overlap is suspected, use of computerized compensation, an alternate wavelength, or comparison with an alternate method is recommended. - 8.6 Check the instrument standardization by analyzing appropriate QC samples as follows. - 8.6.1 Verify calibration with the Continuing Calibration Verification (CCV) Standard immediately following daily calibration, after every ten samples, and at the end of an analytical run. Check calibration with an ICV following the initial calibration (Section 5.6). At the laboratory's discretion, an ICV may be used in lieu of the continuing calibration verifications. If used in this manner, the ICV should be at a concentration near the mid-point of the calibration curve. Use a calibration blank (Section 5.5.1) immediately following daily calibration, after every 10 samples and at the end of the analytical run. - 8.6.1.1 The results of the ICV and CCVs are to agree within 10% of the expected value; if not, terminate the analysis, correct the problem, and recalibrate the instrument. - 8.6.1.2 The results of the check standard are to agree within 10% of the expected value; if not, terminate the analysis, correct the problem, and recalibrate the instrument. - 8.6.1.3 The results of the calibration blank are to agree within three times the IDL. If not, repeat the analysis two more times and average the results. If the average is not within three standard deviations of the background mean, terminate the analysis, correct the problem, recalibrate, and reanalyze the previous 10 samples. If the blank is less than 1/10 the concentration of the action level of interest, and no sample is within ten percent of the action limit, analyses need not be rerun and recalibration need not be performed before continuation of the run. - 8.6.2 Verify the interelement and background correction factors at the beginning of each analytical run. Do this by analyzing the interference check sample (Section 5.8). Results should be within ± 20% of the true value. # 9.0 METHOD PERFORMANCE - 9.1 In an EPA round-robin Phase 1 study, seven laboratories applied the ICP technique to acid-distilled water matrices that had been spiked with various metal concentrates. Table 4 lists the true values, the mean reported values, and the mean percent relative standard deviations. - 9.2 Performance data for aqueous solutions and solid samples from a multilaboratory study (9) are provided in Tables 5 and 6. #### 10.0 REFERENCES - 1. Boumans, P.W.J.M. <u>Line Coincidence Tables for Inductively Coupled Plasma Atomic Emission Spectrometry</u>, 2nd Edition. Pergamon Press, Oxford, United Kingdom, 1984. - 2. <u>Sampling and Analysis Methods for Hazardous Waste Combustion</u>; U.S. Environmental Protection Agency; Air and Energy Engineering Research Laboratory, Office of Research and Development: Research Triangle Park, NC, 1984; Prepared by Arthur D. Little, Inc. - 3. Rohrbough, W.G.; et al. <u>Reagent Chemicals, American Chemical Society Specifications</u>, 7th ed.; American Chemical Society: Washington, DC, 1986. - 4. <u>1985 Annual Book of ASTM Standards</u>, Vol. 11.01; "Standard Specification for Reagent Water"; ASTM: Philadelphia, PA, 1985; D1193-77. - 5. Jones, C.L. et al. <u>An Interlaboratory Study of Inductively Coupled Plasma Atomic Emission Spectroscopy Method 6010 and Digestion Method 3050</u>. EPA-600/4-87-032, U.S. Environmental Protection Agency, Las Vegas, Nevada, 1987. TABLE 1 RECOMMENDED WAVELENGTHS AND ESTIMATED INSTRUMENTAL DETECTION LIMITS | Detection | 9 | Estimated IDL ^b | |----------------------------|------------------------------|----------------------------| | Element | Wavelength ^a (nm) | (µg/L) | | A4 | 222.245 | | | Aluminum | 308.215 | 30 | | Antimony | 206.833 | 21 | | Arsenic | 193.696 | 35 | | Barium | 455.403 | 0.87 | | Beryllium | 313.042 | 0.18 | | Boron | 249.678x2 | 3.8 | | Cadmium | 226.502 | 2.3 | | Calcium | 317.933 | 6.7 | | Chromium | 267.716 | 4.7 | | Cobalt | 228.616 | 4.7 | | Copper | 324.754 | 3.6 | | Iron | 259.940 | 4.1 | | Lead | 220.353 | 28 | | Lithium | 670.784 | 2.8 | | Magnesium | 279.079 | 20 | | Manganese | 257.610 | 0.93 | | Mercury | 194.227x2 | 17 | | Molybdenum | 202.030 | 5.3 | | Nickel | 231.604x2 | 10 | | Phosphorus | 213.618 | 51 | | Potassium | 766.491 | See note c | | Selenium | 196.026 | 50 | | Silica (SiO ₂) | 251.611 | 17 | | Silver | 328.068 | 4.7 | | Sodium | 588.995 | 19 | | Strontium | 407.771 | 0.28 | | Thallium | 190.864 | 27 | | Tin | 189.980x2 | 17 | | Titanium | 334.941 | 5.0 | | Vanadium | 292.402 | 5.0 | | Zinc | 213.856x2 | 1.2 | ^aThe wavelengths listed (where x2 indicates second order) are recommended because of their sensitivity and overall acceptance. Other wavelengths may be substituted (e.g., in the case of an interference) if they can provide the needed sensitivity and are treated with the same corrective techniques for spectral interference (see Section 3.1). In time, other elements may be added as more information becomes available and as required. ^bThe estimated instrumental detection limits shown are provided as a guide for an instrumental limit. The actual method detection limits are sample dependent and may vary as the sample matrix varies. ^cHighly dependent on operating conditions and plasma position. # TABLE 2 POTENTIAL INTERFERENCES ANALYTE CONCENTRATION EQUIVALENTS ARISING FROM INTERFERENCE AT THE 100-mg/L LEVEL | | Interferant ^{a,b} | | | | | | | | | | | |--|---|------------------------------|--------------|------------------|--------------------------|---|---------------|------------------------|----------------------|--------------------------|--------------------------| | Analyte | Wavelength
(nm) | Al | Са | Cr | Cu | Fe | Mg | Mn | Ni | Ti | V | | Aluminum
Antimony
Arsenic | 308.215
206.833
193.696 |
0.47
1.3 |
 | 2.9
0.44 | | 0.08 |
 | 0.21 | | 0.25
 | 1.4
0.45
1.1 | | Barium
Beryllium | 455.403
313.042 | | | | | | | | |
0.04 | 0.05 | | Cadmium
Calcium
Chromium
Cobalt
Copper | 226.502
317.933
267.716
228.616
324.754 |

 |

 | 0.08

0.03 |

 | 0.03
0.01
0.003
0.005
0.003 | 0.01

 | 0.04
0.04
 | 0.02

0.03 | 0.03

0.15
0.05 | 0.03
0.04

0.02 | | Iron
Lead
Magnesium
Manganese | 259.940
220.353
279.079
257.610 | 0.17

0.005 |
0.02
 |
0.11
0.01 | -
-
- |
0.13
0.002 |

0.002 | 0.12
-
0.25
- | |
0.07 |
0.12
 | |
Molybdenum
Nickel
Selenium
Sodium
Thallium
Vanadium
Zinc | 202.030
231.604
196.026
588.995
190.864
292.402
213.856 | 0.05

0.23

0.30 | |

0.05 |

0.14 | 0.03

0.09

0.005 |

 |

 |

0.29 |

0.08

0.02 |

 | Dashes indicate that no interference was observed even when interferents were introduced at the following levels: | Al - | 1000 mg/L | Mg - 1000 mg/L | |------|-----------|----------------| | Ca - | 1000 mg/L | Mn - 200 mg/L | | Cr- | 200 mg/L | TI - 200 mg/L | | Cu - | 200 mg/L | V - 200 mg/L | | Fe - | 1000 mg/L | | The figures recorded as analyte concentrations are not the actual observed concentrations; to obtain those figures, add the listed concentration to the interferant figure. Interferences will be affected by background choice and other interferences may be present. TABLE 3 MIXED STANDARD SOLUTIONS | Solution | Elements | |--------------------|--| | I
II
IV
V | Be, Cd, Mn, Pb, Se and Zn Ba, Co, Cu, Fe, and V As, Mo Al, Ca, Cr, K, Na, Ni,Li, and Sr Ag (see "NOTE" to Section 5.4), Mg, Sb, and TI P | TABLE 4. ICP PRECISION AND ACCURACY DATA^a | Element | Sample No. 1 | | | | Sample No. 2 | | | | Sample No. 3 | | | | |-----------------|-------------------------|-------------------------|-------------|------------------------------|-------------------------|-------------------------|------|------------------------------|-------------------------|-------------------------|-------------------------|---------------------------| | | True
Conc.
(ug/L) | Mean
Conc.
(ug/L) | RSD⁵
(%) | Accuracy ^d
(%) | True
Conc.
(ug/L) | Mean
Conc.
(ug/L) | RSD⁵ | Accuracy ^d
(%) | True
Conc.
(ug/L) | Mean
Conc.
(ug/L) | RSD ^b
(%) | Accuracy ^d (%) | | Be | 750 | 733 | 6.2 | 98 | 20 | 20 | 9.8 | 100 | 180 | 176 | 5.2 | 98 | | Mn | 350 | 345 | 2.7 | 99 | 15 | 15 | 6.7 | 100 | 100 | 99 | 3.3 | 99 | | V | 750 | 749 | 1.8 | 100 | 70 | 69 | 2.9 | 99 | 170 | 169 | 1.1 | 99 | | As | 200 | 208 | 7.5 | 104 | 22 | 19 | 23 | 86 | 60 | 63 | 17 | 105 | | Cr | 150 | 149 | 3.8 | 99 | 10 | 10 | 18 | 100 | 50 | 50 | 3.3 | 100 | | Cu | 250 | 235 | 5.1 | 94 | 11 | 11 | 40 | 100 | 70 | 67 | 7.9 | 96 | | Fe | 600 | 594 | 3.0 | 99 | 20 | 19 | 15 | 95 | 180 | 178 | 6.0 | 99 | | Al | 700 | 696 | 5.6 | 99 | 60 | 62 | 33 | 103 | 160 | 161 | 13 | 101 | | Cd | 50 | 48 | 12 | 96 | 2.5 | 2.9 | 16 | 116 | 14 | 13 | 16 | 93 | | Co | 700 | 512 | 10 | 73 | 20 | 20 | 4.1 | 100 | 120 | 108 | 21 | 90 | | Ni | 250 | 245 | 5.8 | 98 | 30 | 28 | 11 | 93 | 60 | 55 | 14 | 92 | | Pb | 250 | 236 | 16 | 94 | 24 | 30 | 32 | 125 | 80 | 80 | 14 | 100 | | Zn | 200 | 201 | 5.6 | 100 | 16 | 19 | 45 | 119 | 80 | 82 | 9.4 | 102 | | Se ^c | 40 | 32 | 21.9 | 80 | 6 | 8.5 | 42 | 142 | 10 | 8.5 | 8.3 | 85 | aNot all elements were analyzed by all laboratories. RSD = relative standard deviation. Results for Se are from two laboratories. Accuracy is expressed as the mean concentration divided by the true concentration times 100. TABLE 5 ICP-AES PRECISION AND ACCURACY FOR AQUEOUS SOLUTIONS® | Element | Mean
Conc.
(mg/L) | N ^b | RSD⁵
(%) | Accuracy ^c (%) | |---------|-------------------------|------------------|-------------|---------------------------| | Al | 14.8 | 8 | 6.3 | 100 | | Sb | 15.1 | | 7.7 | 102 | | As | 14.7 | 8
7 | 6.4 | 99 | | Ba | 3.66 | 7 | 3.1 | 99 | | Be | 3.78 | 8 | 5.8 | 102 | | Cd | 3.61 | 8 | 7.0 | 97 | | Ca | 15.0 | 8 | 7.4 | 101 | | Cr | 3.75 | 8 | 8.2 | 101 | | Co | 3.52 | 8 | 5.9 | 95 | | Cu | 3.58 | 8 | 5.6 | 97 | | Fe | 14.8 | 8
7 | 5.9 | 100 | | Pb | 14.4 | 7 | 5.9 | 97 | | Mg | 14.1 | 8 | 6.5 | 96 | | Mn | 3.70 | 8 | 4.3 | 100 | | Mo | 3.70 | 8
8
7 | 6.9 | 100 | | Ni | 3.70 | 7 | 5.7 | 100 | | K | 14.1 | 8 | 6.6 | 95 | | Se | 15.3 | 8 | 7.5 | 104 | | Ag | 3.69 | 6 | 9.1 | 100 | | Na | 14.0 | 8
6
8
7 | 4.2 | 95 | | TI | 15.1 | 7 | 8.5 | 102 | | V | 3.51 | 8 | 6.6 | 95 | | Zn | 3.57 | 8 | 8.3 | 96 | athese performance values are independent of sample preparation because the labs analyzed portions of the same solutions ^bN = Number of measurements for mean and relative standard deviation (RSD). ^cAccuracy is expressed as a percentage of the nominal value for each analyte in acidified, multielement solutions. TABLE 6 ICP-AES PRECISION AND BIAS FOR SOLID WASTE DIGESTS^a | | Spiked Coal Fly Ash
(NIST-SRM 1633a) | | | | Spiked Electroplating Sludge | | | | | |---------|---|----------------|-------------------------|-----------------------------|------------------------------|----------------|-------------|-----------------|--| | Element | Mean
Conc.
(mg/L) | Ν ^b | RSD ^b
(%) | Bias ^c
(%AAS) | Mean
Conc.
(mg/L) | N ^b | RSD⁵
(%) | Bias°
(%AAS) | | | Al | 330 | 8 | 16 | 104 | 127 | 8 | 13 | 110 | | | Sb | 3.4 | 6 | 73 | 96 | 5.3 | 7 | 24 | 120 | | | As | 21 | 8 | 83 | 270 | 5.2 | 7 | 8.6 | 87 | | | Ba | 133 | 8 | 8.7 | 101 | 1.6 | 8 | 20 | 58 | | | Be | 4.0 | 8 | 57 | 460 | 0.9 | 7 | 9.9 | 110 | | | Cd | 0.97 | 6 | 5.7 | 101 | 2.9 | 7 | 9.9 | 90 | | | Ca | 87 | 6 | 5.6 | 208 | 954 | 7 | 7.0 | 97 | | | Cr | 2.1 | 7 | 36 | 106 | 154 | 7 | 7.8 | 93 | | | Co | 1.2 | 6 | 21 | 94 | 1.0 | 7 | 11 | 85 | | | Cu | 1.9 | 6 | 9.7 | 118 | 156 | 8 | 7.8 | 97 | | | Fe | 602 | 8 | 8.8 | 102 | 603 | 7 | 5.6 | 98 | | | Pb | 4.6 | 7 | 22 | 94 | 25 | 7 | 5.6 | 98 | | | Mg | 15 | 8 | 15 | 110 | 35 | 8 | 20 | 84 | | | Mn | 1.8 | 7 | 14 | 104 | 5.9 | 7 | 9.6 | 95 | | | Mo | 891 | 8 | 19 | 105 | 1.4 | 7 | 36 | 110 | | | Ni | 1.6 | 6 | 8.1 | 91 | 9.5 | 7 | 9.6 | 90 | | | K | 46 | 8 | 4.2 | 98 | 51 | 8 | 5.8 | 82 | | | Se | 6.4 | 5 | 16 | 73 | 8.7 | 7 | 13 | 101 | | | Ag | 1.4 | 3 | 17 | 140 | 0.75 | 7 | 19 | 270 | | | Na | 20 | 8 | 49 | 130 | 1380 | 8 | 9.8 | 95 | | | TI | 6.7 | 4 | 22 | 260 | 5.0 | 7 | 20 | 180 | | | V | 1010 | 5 | 7.5 | 100 | 1.2 | 6 | 11 | 80 | | | Zn | 2.2 | 6 | 7.6 | 93 | 266 | 7 | 2.5 | 101 | | ^aThese performance values are independent of sample preparation because the labs analyzed portions of the same digests. ^bN = Number of measurements for mean and relative standard deviation (RSD). [&]quot;Bias for the ICP-AES data is expressed as a percentage of atomic absorption spectroscopy (AA) data for the same digests. # INDUCTIVELY COUPLED PLASMA-ATOMIC EMISSION SPECTROMETRY